

### **GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES GRAM SPECTRUMS OF COXETER ANDREEV'S TETRAHEDRONS AND THEIR EXISTENCE IN SPACES: EUCLIDEAN, SPHERICAL AND HYPERBOLIC**

**Pranab Kalita** 

Department of Mathematics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Darrang-784116, Assam, India

#### ABSTRACT

In our previous paper, using graph theory and combinatorics, a study on a special type of tetrahedron called Coxeter Andreev's Tetrahedron (CAT) had been facilitated, and it was found that there are exactly 1, 4 and 30 CATs having respectively two edges of order  $n \ge 6$ , one edge of order  $n \ge 6$  and no edge of order  $n \ge 6$ ,  $n \in$  upto symmetry. In the present paper, we have studied about the shapes or existence of these 1+4+30=35 CATs in the spaces: Euclidean, Spherical and Hyperbolic.

*Keywords:* Dihedral angles, Coxeter Andreev's Tetrahedron, Gram matrix, Spectrum. **MSC 2010 Codes**: 51F15, 20F55, 51M09.

#### I. INTRODUCTION

A simplex (in plural, simplexes or simplices) is a generalization [1] of the notion of a triangle or tetrahedron to arbitrary dimensions. A *n*-dimensional polytope P in  $X = E^n / S^n / H^n$ , with n > 0, is a *n*-simplex [9] if and only if P has exactly n+1 sides. Specifically, a *n*-simplex is a *n*-dimensional polytope which is the convex hull of its n+1 vertices. In particular, a tetrahedron is a 3-dimensional simplex. Tetrahedron is the only 3-simplex convex polyhedron having four faces. The tetrahedron shape has a wide application [2] in engineering and computer science. Tetrahedral mess generation is one of such application. In chemistry, the tetrahedron shape is seen in nature in covalent bonds of molecules. For example, in a methane molecule  $(CH_4)$  or an ammonium ion  $(NH_4^+)$ , four hydrogen atoms surround a central carbon or nitrogen atom with tetrahedral symmetry.

Previously, Roland K. W. Roeder's Theorem [25] provides the classification of compact hyperbolic tetrahedron by restricting to non-obtuse dihedral angles. Vinberg proved in [27] that there are no compact hyperbolic coxeter polytopes in  $H^n$  when  $n \ge 30$ . Tumarkin classified the hyperbolic coxeter pyramids in terms of coxeter diagram and John Mcleod generalized it in his article [10]. D. A. Derevnin, at el [26] found the volume of symmetric tetrahedron. Again, in our article [28], using graph theory and combinatorics, a study on a special type of tetrahedron called coxeter Andreev's tetrahedron has been facilitated and it has been found that there are exactly one, four and thirty coxeter Andreev's tetrahedrons having respectively two edges of order  $n \ge 6$ , one edge of order  $n \ge 6$ ,  $n \in$  upto symmetry. Now, in the present paper, we have studied about the shapes or existence of these 1+4+30=35 CATs in the spaces: Euclidean, Spherical and Hyperbolic.

#### II. COXETER ANDREEV'S TETRAHEDRONS (CATs)

The following definitions are taken from our previous article [28]

**Definition 2.1:** The angle between two faces of a polytope, measured from perpendiculars to the edge created by the intersection of the planes is called a *dihedral angle*.





#### ISSN 2348 - 8034 Impact Factor- 5.070

**Definition 2.2:** A *coxeter* dihedral angle is a dihedral angle of the form  $\frac{\pi}{n}$  where, n is a positive integer  $\geq 2$ . A polytope with coxeter dihedral angles is called a *coxeter polytope*.

**Definition 2.3:** If the dihedral angle of an edge of a polytope is  $\frac{\pi}{n}$ , n is a positive number, then n is said to be the order of the edge. We define a trivalent vertex to be of *order* (l, m, n) if the three edges at that vertex are of orders

l,m,n.

**Definition 2.4:** An Andreev's polytope is an abstract polytope which satisfies the following Andreev's conditions [16].

- (1) Each dihedral angle  $\alpha_i$  is non-obtuse  $\left(0 < \alpha_i \le \frac{\pi}{2}\right)$ .
- (2) Whenever three distinct edges  $e_i, e_j, e_k$  meet at a vertex, then  $\alpha_i + \alpha_j + \alpha_k > \pi$ .
- (3) Whenever  $\Gamma_p(3)$  intersecting edges  $e_i, e_j, e_k$ , then  $\alpha_i + \alpha_j + \alpha_k < \pi$ .
- (4) Whenever  $\Gamma_p(4)$  intersecting edges  $e_i, e_j, e_k, e_l$ , then  $\alpha_i + \alpha_j + \alpha_k + \alpha_l < 2\pi$ .
- (5) Whenever there is a four sided face bounded by edges  $e_1, e_2, e_3, e_4$ , enumerated successively, with edges

 $e_{12}, e_{23}, e_{34}, e_{41}$  entering the four vertices (edge  $e_{ij}$  connects to the ends of  $e_i$  and  $e_j$ ), then

$$\alpha_1 + \alpha_3 + \alpha_{12} + \alpha_{23} + \alpha_{34} + \alpha_{41} < 3\pi \text{ , and } \alpha_2 + \alpha_4 + \alpha_{12} + \alpha_{23} + \alpha_{34} + \alpha_{41} < 3\pi \text{ .}$$

An Andreev's polytope with coxeter dihedral angles is called a *coxeter Andreev's polytope*.

## III. GRAM SPECTRUMS OF COXETER ANDREEV'S TETRAHEDRONS AND THEIR EXISTENCE IN SPACES: EUCLIDEAN, SPHERICAL AND HYPERBOLIC

The gram matrix is the most essential and natural tool associated to a simplex. It takes an important role in scientific computing, statistical mechanics and random matrix theory [20]. The geometric properties of a simplex are enclosed in the eigenvalues of a gram matrix. The shape of a simplex is determined by the determinant of its gram matrix. The gram matrix G of a k-simplex in X whose sides are  $s_1, s_2, \dots, s_{k+1}$  is the  $(k+1) \times (k+1)$  matrix with *ij*th entry is  $-\cos \theta_{ij}$ ,  $\theta_{ij}$  is the angle between the sides  $s_i$  and  $s_j$ . The gram matrix G is symmetric (real), the eigenvalues of G are real and hence can be ordered, say  $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_n$ . The spectrum of a gram matrix is said to be gram spectrum. Let G be a gram matrix with eigenvalues  $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_r$  having respective multiplicities  $m_1, m_2, m_3, \dots, m_r$ . Then the gram spectrum of G is written as

$$\sigma(G) = \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 & & \lambda_r \\ m_1 & m_2 & m_3 & & m_r \end{pmatrix} \text{ or } \sigma(G) = \begin{pmatrix} \lambda_1^{m_1}, & \lambda_2^{m_2}, & \lambda_3^{m_3}, & , & \lambda_r^{m_r} \end{pmatrix}.$$

For a gram matrix G with eigen values  $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ , the Gram Energy is defined as  $GE(G) = \sum_{i=1}^n |\lambda_i|$ .

**Definition 3.1:** A simplex lies in Euclidean, Spherical or Hyperbolic space if the determinant of the gram matrix is 0, positive or negative respectively.





#### ISSN 2348 - 8034 Impact Factor- 5.070

**Definition 3.2:** Consider a compact tetrahedron (Euclidean/Spherical/Hyperbolic) T with dihedral angles A, B, C at the edges adjacent to one vertex, and D, E, F are the dihedral angles opposite to A, B, C respectively. Then the gram matrix of the tetrahedron T(A, B, C, D, E, F) is defined as

$$G = \begin{bmatrix} 1 & -\cos A & -\cos B & -\cos F \\ -\cos A & 1 & -\cos C & -\cos E \\ -\cos B & -\cos C & 1 & -\cos D \\ -\cos F & -\cos E & -\cos D & 1 \end{bmatrix}$$

**Theorem 3.3:** [28] In a CAT T, if exactly two edges are of order  $n \ge 6$ , then there exists exactly 1 such T upto symmetry. Refer figure 1.



**Result 3.4:** Determinant and spectrum of the gram matrix of the CAT  $T_{2n}-1 = [m \ge 6, 2, 2, n \ge 6, 2, 2]$  obtained in theorem 3.3 is calculated and listed in table 1. This table also shows the space in which this CAT exists.

| Table 1                                                 |             |                                                                                                                                |                                 |  |  |
|---------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
| CAT                                                     | Determinant | Spectrum                                                                                                                       | Space<br>(Ref. Def. 3.1)        |  |  |
| $\mathbf{T}_{2n} - 1 = [m \ge 6, 2, 2, n \ge 6, 2, 2] $ |             | $\begin{pmatrix} 1 - \cos\frac{\pi}{m}, 1 + \cos\frac{\pi}{m}, \\ 1 - \cos\frac{\pi}{n}, 1 + \cos\frac{\pi}{n}, \end{pmatrix}$ | Spherical<br>(Ref. Theorem 3.5) |  |  |

**Theorem 3.5:** The CAT  $T_{2n} - 1 = [m \ge 6, 2, 2, n \ge 6, 2, 2]$  exists in spherical space. **Proof:** The determinant of the gram matrix for  $T_{2n} - 1 = [m \ge 6, 2, 2, n \ge 6, 2, 2]$  is





ISSN 2348 - 8034 Impact Factor- 5.070

$$\begin{vmatrix} 1 & -\cos\frac{\pi}{m} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{m} & 1 & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{n} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{n} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{n} & 1 \end{vmatrix} = \begin{vmatrix} 1 & -\cos\frac{\pi}{m} & 0 & 0 \\ -\cos\frac{\pi}{m} & 1 & 0 & 0 \\ 0 & 0 & 1 & -\cos\frac{\pi}{n} \\ 0 & 0 & -\cos\frac{\pi}{n} & 1 \end{vmatrix}$$
$$= 1 - \cos^{2}\left(\frac{\pi}{m}\right) - \cos^{2}\left(\frac{\pi}{m}\right) + \cos^{2}\left(\frac{\pi}{m}\right) \cos^{2}\left(\frac{\pi}{m}\right)$$

Let  $f(m,n) = 1 - \cos^2\left(\frac{\pi}{n}\right) - \cos^2\left(\frac{\pi}{m}\right) + \cos^2\left(\frac{\pi}{n}\right)\cos^2\left(\frac{\pi}{n}\right)$ . Then  $f(m,n) > 0, \forall m \ge 6, \forall n \ge 6$  as shown in figure 2. The figure 2 is obtained by keeping m as constant,  $m \ge 6$  and  $n \ge 6$ . By definition 3.1, the CAT  $T_{2n} - 1 = [m \ge 6, 2, 2, n \ge 6, 2, 2]$  exists in spherical space.



**Theorem 3.6:** [28] In a CAT T, if exactly one edge is of order  $n \ge 6$ , then there exists exactly 4 such T upto symmetry. Refer figure 3.

76









ISSN 2348 - 8034 Impact Factor- 5.070



**Result 3.7:** Determinants and spectrums of the gram matrices of the 4 CATs obtained in theorem 3.6 are calculated and listed in table 2. This table also shows the spaces in which these 4 CATs tetrahedrons exist.

|                                         | Table 2                                                     |                                                                                                                                 |                                  |
|-----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CATs                                    | Determinant                                                 | Spectrum                                                                                                                        | Space (Ref. Def. 3.1)            |
| $T_{in} - 1 = [n \ge 6, 2, 2, 2, 2, 2]$ | $1-\cos^2\frac{\pi}{n}$                                     | $\begin{pmatrix} 1+\sqrt{1-\sin^2\frac{\pi}{n}},\\ 1-\sqrt{1-\sin^2\frac{\pi}{n}},\\ 1,\\ 1 \end{pmatrix}$                      | Spherical<br>(Ref. Theorem 3.8)  |
| $T_{1n} - 2 = [n \ge 6, 2, 2, 3, 2, 2]$ | $\frac{3}{4} - \frac{3}{4}\cos^2\left(\frac{\pi}{n}\right)$ | $\begin{pmatrix} \frac{1}{2}, \\ \frac{3}{2}, \\ 1 - \cos\frac{\pi}{n}, \\ 1 + \cos\frac{\pi}{n} \end{pmatrix}$                 | Spherical<br>(Ref. Theorem 3.9)  |
| $T_{1n} - 3 = [n \ge 6, 2, 2, 4, 2, 2]$ | $\frac{1}{2} - \frac{1}{2}\cos^2\left(\frac{\pi}{n}\right)$ | $\begin{pmatrix} 1+\frac{1}{2}\sqrt{2}, \\ 1-\frac{1}{2}\sqrt{2}, \\ 1-\cos\frac{\pi}{n}, \\ 1+\cos\frac{\pi}{n} \end{pmatrix}$ | Spherical<br>(Ref. Theorem 3.10) |





## ISSN 2348 - 8034



**Theorem 3.8:** The CAT  $T_{1n} - 1 = [n \ge 6, 2, 2, 2, 2, 2]$  exists in spherical space.

**Proof:** The determinant of the gram matrix for  $T_{ln} - 1 = [n \ge 6, 2, 2, 2, 2, 2]$  is

$$\begin{vmatrix} 1 & -\cos\frac{\pi}{n} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{n} & 1 & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 \end{vmatrix} = \begin{vmatrix} 1 & -\cos\frac{\pi}{n} & 0 & 0 \\ -\cos\frac{\pi}{n} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
$$= 1 - \cos^2\left(\frac{\pi}{n}\right)$$

Let  $f(n) = 1 - \cos^2\left(\frac{\pi}{n}\right)$ . Then  $f(n) > 0, \forall n \ge 6$  as shown in figure 4. By definition 3.1, the CAT  $T_{1n} - 1 = [n \ge 6, 2, 2, 2, 2, 2]$  exists in spherical space.



**Theorem 3.9:** The CAT  $T_{1n}-2 = [n \ge 6, 2, 2, 3, 2, 2]$  exists in spherical space. **Proof:** The determinant of the gram matrix for  $T_{1n}-2 = [n \ge 6, 2, 2, 3, 2, 2]$  is





ISSN 2348 - 8034 Impact Factor- 5.070

$$\begin{vmatrix} 1 & -\cos\frac{\pi}{n} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{n} & 1 & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{3} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{3} & 1 \end{vmatrix} = \begin{vmatrix} 1 & -\cos\frac{\pi}{n} & 0 & 0 \\ -\cos\frac{\pi}{n} & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 1 \\ = \frac{3}{4} - \frac{3}{4}\cos^2\left(\frac{\pi}{n}\right) \end{vmatrix}$$

Let  $f(n) = \frac{3}{4} - \frac{3}{4}\cos^2\left(\frac{\pi}{n}\right)$ . Then  $f(n) > 0, \forall n \ge 6$  as shown in figure 5. By definition 3.1, the CAT  $T_{ln} - 2 = [n \ge 6, 2, 2, 3, 2, 2]$  exists in spherical space.



Figure 5

**Theorem 3.10:** The CAT  $T_{ln}$  -3 =  $[n \ge 6, 2, 2, 4, 2, 2]$  exists in spherical space. **Proof:** The determinant of the gram matrix for  $T_{ln}$  -3 =  $[n \ge 6, 2, 2, 4, 2, 2]$  is

Let  $f(n) = \frac{1}{2} - \frac{1}{2}\cos^2\left(\frac{\pi}{n}\right)$ . Then  $f(n) > 0, \forall n \ge 6$  as shown in figure 6. By definition 3.1, the CAT  $T_{1n} - 3 = [n \ge 6, 2, 2, 4, 2, 2]$  exists in spherical space.





ISSN 2348 - 8034 Impact Factor- 5.070



**Theorem 3.11:** The CAT  $T_{ln}-4 = [n \ge 6, 2, 2, 5, 2, 2]$  exists in spherical space. **Proof:** The determinant of the gram matrix for  $T_{ln}-4 = [n \ge 6, 2, 2, 5, 2, 2]$  is

$$\begin{vmatrix} 1 & -\cos\frac{\pi}{n} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{n} & 1 & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{5} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & 1 & -\cos\frac{\pi}{5} \\ -\cos\frac{\pi}{2} & -\cos\frac{\pi}{2} & -\cos\frac{\pi}{5} & 1 \end{vmatrix} = \begin{vmatrix} 1 & -\cos\frac{\pi}{n} & 0 & 0 \\ -\cos\frac{\pi}{n} & 1 & 0 & 0 \\ 0 & 0 & 1 & -\cos\frac{\pi}{5} \\ 0 & 0 & -\cos\frac{\pi}{5} & 1 \end{vmatrix}$$
$$= 1 - \cos^{2}\left(\frac{\pi}{5}\right) - \cos^{2}\left(\frac{\pi}{n}\right) + \cos^{2}\left(\frac{\pi}{n}\right) \cos^{2}\left(\frac{\pi}{5}\right)$$

Let  $f(n) = 1 - \cos^2\left(\frac{\pi}{5}\right) - \cos^2\left(\frac{\pi}{n}\right) + \cos^2\left(\frac{\pi}{5}\right) \cos^2\left(\frac{\pi}{5}\right)$ . Then  $f(n) > 0, \forall n \ge 6$  as shown in figure 7. By definition 3.1, the CAT  $T_{1n} - 4 = [n \ge 6, 2, 2, 5, 2, 2]$  exists in spherical space.







#### ISSN 2348 - 8034 Impact Factor- 5.070

**Theorem 3.12:** [28] In a CAT T, if T has no edge of order  $n \ge 6$ , then there are exactly 10 such T upto symmetry with at least one vertex is of order (2,2,2). Refer figure 8.







#### ISSN 2348 - 8034 Impact Factor- 5.070

**Result 3.13:** Determinants and spectrums of Gram matrices of the 10 CATs obtained in theorem 3.12 are calculated and listed in table 3. This table also shows the spaces in which these 10 CATs tetrahedrons exist.

| Determinant                                      | <b>a</b> .                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Determinant                                      | Spectrum                                                                                                                                                                        | Space (Ref. Def. 3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                                | (1,1,1,1)                                                                                                                                                                       | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{3}{4}$                                    | $\left(\frac{3}{2},\frac{1}{2},1,1\right)$                                                                                                                                      | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{2}$                                    | $\left(1+\frac{1}{2}\sqrt{2},1-\frac{1}{2}\sqrt{2},1,1\right)$                                                                                                                  | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $1-\cos^2\left(\frac{\pi}{5}\right)$             | $\begin{pmatrix} 1+\frac{1}{2}\sqrt{1+2\cos\left(\frac{\pi}{5}\right)}, \\ 1 & 1 & 1 & 2 & (\pi) \end{pmatrix}$                                                                 | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | $\begin{pmatrix} 1-\frac{1}{2}\sqrt{1+2\cos\left(\frac{1}{5}\right)},\\ 1,\\ 1 \end{pmatrix}$                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{2}$                                    | $\left(1+\frac{1}{2}\sqrt{2},1-\frac{1}{2}\sqrt{2},1,1\right)$                                                                                                                  | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{4}$                                    | $\left(1+\frac{1}{2}\sqrt{3},1-\frac{1}{2}\sqrt{3},1,1\right)$                                                                                                                  | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{3}{4} - \cos^2\left(\frac{\pi}{5}\right)$ | $\left(1 + \frac{1}{2}\sqrt{2 + 2\cos\left(\frac{\pi}{5}\right)},\right)$                                                                                                       | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | $\begin{pmatrix} 1-\frac{1}{2}\sqrt{2+2\cos\left(\frac{\pi}{5}\right)},\\ 1,\\ 1 \end{pmatrix}$                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{4}$                                    | $\left(1+\frac{1}{2}\sqrt{3},1-\frac{1}{2}\sqrt{3},1,1\right)$                                                                                                                  | Spherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0                                                | (0,2,1,1)                                                                                                                                                                       | Euclidean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{1}{2} - \cos^2\left(\frac{\pi}{5}\right)$ | $\begin{pmatrix} 1+\frac{1}{2}\sqrt{3+2\cos\left(\frac{\pi}{5}\right)},\\ 1-\frac{1}{2}\sqrt{3+2\cos\left(\frac{\pi}{5}\right)},\\ 1, \end{pmatrix}$                            | Hyperbolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | $\frac{\frac{1}{2}}{1-\cos^2\left(\frac{\pi}{5}\right)}$ $\frac{\frac{1}{2}}{\frac{1}{4}}$ $\frac{\frac{3}{4}-\cos^2\left(\frac{\pi}{5}\right)}{\frac{1}{4}}$ $\frac{1}{4}$ $0$ | $\frac{\frac{3}{4}}{\frac{1}{2}} \qquad \left(\frac{3}{2}, \frac{1}{2}, 1, 1\right)$ $\frac{1}{2} \qquad \left(1 + \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2}, 1, 1\right)$ $1 - \cos^{2}\left(\frac{\pi}{5}\right) \qquad \left(1 + \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1}{1 - \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1}{1 - \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1}{1 - \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2}, 1, 1\right)}$ $\frac{1}{2} \qquad \left(1 + \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2}, 1, 1\right)$ $\frac{1}{4} \qquad \left(1 + \frac{1}{2}\sqrt{3}, 1 - \frac{1}{2}\sqrt{3}, 1, 1\right)$ $\frac{1}{4} \qquad \left(1 + \frac{1}{2}\sqrt{2 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1}{1 - \frac{1}{2}\sqrt{3}, 1, 1}\right)$ $\frac{1}{2} - \cos^{2}\left(\frac{\pi}{5}\right) \qquad \left(1 + \frac{1}{2}\sqrt{3 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1 + \frac{1}{2}\sqrt{3 + 2\cos\left(\frac{\pi}{5}\right)}, \frac{1}{1 - \frac{1}{2}3 + 2\cos\left$ |





#### ISSN 2348 - 8034 Impact Factor- 5.070

**Theorem 3.14:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 8 such T upto symmetry with at least one vertex is of order (2,2,3) and no vertex is of order (2,2,2).



**Result 3.15:** Determinants and spectrums of gram matrices of the 8 CATs obtained in theorem 3.14 are calculated and listed in table 4. This table also shows the spaces in which these 8 CATs tetrahedrons exist.

| Table 4                           |             |                                                                                 |            |  |
|-----------------------------------|-------------|---------------------------------------------------------------------------------|------------|--|
| CATs                              | Determinant | Spectrum                                                                        | Space(Ref. |  |
|                                   |             |                                                                                 | Def. 3.1)  |  |
| $T_{0n}$ -11 = [2, 2, 3, 2, 2, 3] | 9           | (3 1 3 1)                                                                       | Spherical  |  |
|                                   | 16          | $\left(\overline{2},\overline{2},\overline{2},\overline{2},\overline{2}\right)$ |            |  |





## ISSN 2348 - 8034

| Impact Factor- 5.070 |
|----------------------|
|----------------------|

| DOI- 10.5281/zenodo                | 0.3240027                                                    | Impact Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01-2.070   |
|------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $T_{0n} - 12 = [2, 2, 3, 3, 2, 3]$ | $\frac{5}{16}$                                               | $\begin{pmatrix} \frac{3}{4} + \frac{1}{4}\sqrt{5}, \frac{3}{4} - \frac{1}{4}\sqrt{5}, \\ \frac{5}{4} + \frac{1}{4}\sqrt{5}, \frac{5}{4} - \frac{1}{4}\sqrt{5} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spherical  |
| $T_{0n} - 13 = [2, 2, 3, 4, 2, 3]$ | $\frac{1}{16}$                                               | $\begin{pmatrix} 1 - \frac{1}{4}\sqrt{6} - \frac{1}{4}\sqrt{2}, 1 + \frac{1}{4}\sqrt{6} + \frac{1}{4}\sqrt{2}, \\ 1 - \frac{1}{4}\sqrt{6} + \frac{1}{4}\sqrt{2}, 1 + \frac{1}{4}\sqrt{6} - \frac{1}{4}\sqrt{2} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                   | Spherical  |
| $T_{0n} - 14 = [2, 2, 3, 5, 2, 3]$ | $\frac{9}{16} - \cos^2\left(\frac{\pi}{5}\right)$            | $\begin{pmatrix} 1 + \frac{1}{2}\cos\left(\frac{\pi}{5}\right) + \frac{1}{2}\sqrt{1 + \cos^{2}\left(\frac{\pi}{5}\right)}, \\ 1 + \frac{1}{2}\cos\left(\frac{\pi}{5}\right) - \frac{1}{2}\sqrt{1 + \cos^{2}\left(\frac{\pi}{5}\right)}, \\ 1 - \frac{1}{2}\cos\left(\frac{\pi}{5}\right) + \frac{1}{2}\sqrt{1 + \cos^{2}\left(\frac{\pi}{5}\right)}, \\ 1 - \frac{1}{2}\cos\left(\frac{\pi}{5}\right) + \frac{1}{2}\sqrt{1 - \cos^{2}\left(\frac{\pi}{5}\right)} \end{pmatrix}$                                                                                                                                                 | Hyperbolic |
| $T_{0n} - 15 = [2, 2, 3, 2, 2, 4]$ | $\frac{3}{8}$                                                | $\frac{\left(\frac{1}{2},\frac{3}{2},1+\frac{1}{2}\sqrt{2},1-\frac{1}{2}\sqrt{2}\right)}{\left(\frac{1}{2},\frac{3}{2},1+\frac{1}{2}\sqrt{2},1-\frac{1}{2}\sqrt{2}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spherical  |
| $T_{0n}$ -16 = [2, 2, 3, 2, 2, 5]  | $\frac{3}{4} - \frac{3}{4}\cos^2\left(\frac{\pi}{5}\right)$  | $\left(1+\cos\left(\frac{\pi}{5}\right),1-\cos\left(\frac{\pi}{5}\right),\frac{3}{2},\frac{1}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spherical  |
| $T_{0n}$ -17 = [2, 2, 3, 3, 2, 4]  | $\frac{1}{8}$                                                | $\begin{pmatrix} 1 - \frac{1}{2}\sqrt{2 + \sqrt{2}}, 1 + \frac{1}{2}\sqrt{2 + \sqrt{2}}, \\ 1 - \frac{1}{2}\sqrt{2 - \sqrt{2}}, 1 + \frac{1}{2}\sqrt{2 - \sqrt{2}} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spherical  |
| $T_{0n} - 18 = [2, 2, 3, 3, 2, 5]$ | $\frac{1}{2} - \frac{3}{4} \cos^2\left(\frac{\pi}{5}\right)$ | $\begin{pmatrix} 1 + \frac{1}{4}\sqrt{6 + 2}\sqrt{4\cos^2\left(\frac{\pi}{5}\right) + 4\cos\left(\frac{\pi}{5}\right) + 5} + 4\cos\left(\frac{\pi}{5}\right), \\ 1 - \frac{1}{4}\sqrt{6 + 2}\sqrt{4\cos^2\left(\frac{\pi}{5}\right) + 4\cos\left(\frac{\pi}{5}\right) + 5} + 4\cos\left(\frac{\pi}{5}\right), \\ 1 + \frac{1}{4}\sqrt{6 - 2}\sqrt{4\cos^2\left(\frac{\pi}{5}\right) + 4\cos\left(\frac{\pi}{5}\right) + 5} + 4\cos\left(\frac{\pi}{5}\right), \\ 1 - \frac{1}{4}\sqrt{6 - 2}\sqrt{4\cos^2\left(\frac{\pi}{5}\right) + 4\cos\left(\frac{\pi}{5}\right) + 5} + 4\cos\left(\frac{\pi}{5}\right), \\ \end{pmatrix}$ | Spherical  |

**Theorem 3.16:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 4 such T upto symmetry with at least one vertex is of order (2,2,4) and no vertex is of order of the forms (2,2,2), (2,2,3).





ISSN 2348 - 8034 Impact Factor- 5.070



**Result 3.17:** Determinants and spectrums of gram matrices of the 4 CATs obtained in theorem 3.16 are calculated and listed in table 5. This table also shows the spaces in which these 4 CATs tetrahedrons exist.

| Table 5                            |                                                             |                                                                                                                                                     |                         |  |
|------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
| CATs                               | Determinant                                                 | Spectrum                                                                                                                                            | Space<br>(Ref. Def. 3.1 |  |
| $T_{0n} - 19 = [2, 4, 2, 2, 4, 2]$ | $\frac{1}{4}$                                               | $\begin{pmatrix} 1 + \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2}, \\ 1 + \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2} \end{pmatrix}$               | Spherical               |  |
| $T_{0n} - 20 = [2, 2, 4, 3, 2, 4]$ | 0                                                           | $\left(0,2,\frac{1}{2},\frac{3}{2}\right)$                                                                                                          | Euclidean               |  |
| $T_{0n} - 21 = [2, 2, 4, 2, 2, 5]$ | $\frac{1}{2} - \frac{1}{2}\cos^2\left(\frac{\pi}{5}\right)$ | $\begin{pmatrix} 1+\frac{1}{2}\sqrt{2}, 1-\frac{1}{2}\sqrt{2}, \\ 1+\cos\left(\frac{\pi}{5}\right), 1-\cos\left(\frac{\pi}{5}\right) \end{pmatrix}$ | Spherical               |  |





#### [Kalita, 6(6): June 2019] ISSN 2348 - 8034 DOI- 10.5281/zenodo.3246627 Impact Factor- 5.070 Hyperbolic $T_{0n}$ -22 = [2, 2, 4, 3, 2, 5] $\frac{1}{4} - \frac{1}{2}\cos^2$ $\left(\frac{\pi}{5}\right)$ $\frac{\pi}{5}$ $2 + \cos^2$ 1 + $+2 + \cos \theta$ $+2 + \cos^{-2}$ $\cos^2$ $\frac{\pi}{5}$ $+2 + \cos \theta$ $\frac{\pi}{5}$ $+2 + \cos \theta$ 1-

**Theorem 3.18:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 2 such T upto symmetry with at least one vertex is of order (2,2,5) and no vertex is of order of the forms (2,2,2), (2,2,3), (2,2,4).



**Result 3.19:** Determinants and spectrums of gram matrices of the 2 CATs obtained in theorem 3.18 are calculated and listed in table 6. This table also shows the spaces in which these 2 CATs tetrahedrons exist.

| Table 6                            |                                                                            |                                                                           |                 |  |  |
|------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|--|--|
| CATs                               | Determinant                                                                | Spectrum                                                                  | Space           |  |  |
|                                    |                                                                            | _                                                                         | (Ref. Def. 3.1) |  |  |
| $T_{0n} - 23 = [2, 2, 5, 2, 2, 5]$ | $1 - 2\cos^2\left(\frac{\pi}{5}\right) + \cos^4\left(\frac{\pi}{5}\right)$ | $\left(1 + \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)},\right)$ | Spherical       |  |  |
|                                    |                                                                            | $1 - \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)},$              |                 |  |  |
|                                    |                                                                            | $1 + \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)},$              |                 |  |  |
|                                    |                                                                            | $\left(1 - \frac{1}{2}\sqrt{1 + 2\cos\left(\frac{\pi}{5}\right)}\right)$  |                 |  |  |





ISSN 2348 - 8034



**Theorem 3.20:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 3 such T up to symmetry with at least one vertex is of order (2,3,3)and no vertex is of order of the forms (2,2,2),(2,2,3),(2,2,4),(2,2,5).



Result 3.21: Determinants and spectrums of gram matrices of the 3 CATs obtained in theorem 3.20 are calculated and listed in table 7. This table also shows the spaces in which these 3 CATs tetrahedrons exist.

|                                    | Table 7                                         |                                                                                                                                                                                                                                                                                                                             |                 |  |  |
|------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| CAT                                | Determinant                                     | Spectrum                                                                                                                                                                                                                                                                                                                    | Space           |  |  |
|                                    |                                                 |                                                                                                                                                                                                                                                                                                                             | (Ref. Def. 3.1) |  |  |
| $T_{0n} - 25 = [2, 3, 3, 2, 3, 3]$ | 0                                               | (0,2,1,1)                                                                                                                                                                                                                                                                                                                   | Euclidean       |  |  |
| $T_{0n} - 26 = [2, 3, 3, 2, 3, 4]$ | $-\frac{1}{8}\left(\frac{1}{2}+\sqrt{2}\right)$ | $\begin{pmatrix} \frac{5}{4} + \frac{1}{4}\sqrt{2} + \frac{1}{4}\sqrt{7 - 2\sqrt{2}}, \\ \frac{5}{4} + \frac{1}{4}\sqrt{2} - \frac{1}{4}\sqrt{7 - 2\sqrt{2}}, \\ \frac{3}{4} - \frac{1}{4}\sqrt{2} + \frac{1}{4}\sqrt{7 - 2\sqrt{2}}, \\ \frac{3}{4} - \frac{1}{4}\sqrt{2} - \frac{1}{4}\sqrt{7 - 2\sqrt{2}} \end{pmatrix}$ | Hyperbolic      |  |  |





[Kalita, 6(6): June 2019]

#### ISSN 2348 - 8034 Impact Factor- 5.070



**Theorem 3.22:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 2 such T upto symmetry with at least one vertex is of order (2,3,4) and no vertex is of order of the forms (2,2,2),(2,2,3),(2,2,4),(2,2,5),(2,3,3).



**Result 3.23:** Determinants and spectrums of gram matrices of the 2 CATs obtained in theorem 3.22 are calculated and listed in table 8. This table also shows the spaces in which these 2 CATs tetrahedrons exist.

|                                    | Table 8        |                                                                                                                                                                               |                             |  |
|------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| CATs                               | Determinant    | Spectrum                                                                                                                                                                      | Space<br>(Ref. Def.<br>3.1) |  |
| $T_{0n} - 28 = [2, 3, 4, 2, 3, 4]$ | $-\frac{7}{6}$ | $\begin{pmatrix} \frac{1}{2} + \frac{1}{2}\sqrt{2}, \frac{1}{2} - \frac{1}{2}\sqrt{2}, \\ \frac{3}{2} + \frac{1}{2}\sqrt{2}, \frac{3}{2} - \frac{1}{2}\sqrt{2} \end{pmatrix}$ | Hyperbolic                  |  |





#### ISSN 2348 – 8034 Impact Factor- 5.070

| DOI IOIDEOI/ Lenouoit | Impactiat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                       | $\begin{pmatrix} \frac{9}{8} + \frac{1}{4}\sqrt{2} + \frac{1}{8}\sqrt{5} + \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} + \frac{1}{4}\sqrt{2} + \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{4}\sqrt{2} + \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}},\\ \frac{9}{8} - \frac{1}{8}\sqrt{5} $ | Hyperbolic |
|                       | $\left(\frac{\frac{7}{8} - \frac{1}{4}\sqrt{2} - \frac{1}{8}\sqrt{5} + \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}}}{\frac{7}{8} - \frac{1}{4}\sqrt{2} - \frac{1}{8}\sqrt{5} - \frac{1}{8}\sqrt{30 - 4\sqrt{2} + 2\sqrt{5} - 4\sqrt{2}\sqrt{5}}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

**Theorem 3.24:** [28] If a CAT T has no edge of order  $n \ge 6$ , then there are exactly 1 such T upto symmetry with at least one vertex is of order (2,3,5) and no vertex is of order of the forms (2,2,2),(2,2,3),(2,2,4),(2,2,5),(2,3,3),(2,3,4).



**Result 3.25:** Determinants and spectrums of gram matrices of the 1 CAT obtained in theorem 3.24 is calculated and listed in table 9. This table also shows the spaces in which these 1 CAT exists.

|                                    | T                                                                                               | able 9                                                                                                                                                                                                                    |                 |
|------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| CAT                                | Determinant                                                                                     | Spectrum                                                                                                                                                                                                                  | Space           |
|                                    |                                                                                                 |                                                                                                                                                                                                                           | (Ref. Def. 3.1) |
| $T_{0n} - 30 = [2, 3, 5, 2, 3, 5]$ | $\frac{9}{16} - \frac{5}{2}\cos^2\left(\frac{\pi}{5}\right) + \cos^4\left(\frac{\pi}{5}\right)$ | $\begin{pmatrix} \frac{3}{2} + \cos\left(\frac{\pi}{5}\right), \frac{1}{2} - \cos\left(\frac{\pi}{5}\right), \\ \frac{3}{2} - \cos\left(\frac{\pi}{5}\right), \frac{1}{2} + \cos\left(\frac{\pi}{5}\right) \end{pmatrix}$ | Hyperbolic      |

**Remark 3.26:** Out of 35 CATs, there are exactly 3 Euclidean CATs, each of them has no edge of order  $n \ge 6$ ,  $n \in$  upto symmetry. [Refer tables 3, 5 and 7]

**Remark 3.27:** Out of 35 CATs, there are exactly 23 spherical CATs, 1 CAT has two edges of order  $n \ge 6$ , 4 CATs have one edge of order  $n \ge 6$  and rest 18 CATs have no edge of order  $n \ge 6$ ,  $n \in$  upto symmetry. [Refer tables 1 to 6]





#### ISSN 2348 - 8034 Impact Factor- 5.070

**Remark 3.28:** Out of 35 CATs, there are exactly 9 hyperbolic CATs, each of them has no edge of order  $n \ge 6$ ,  $n \in$  upto symmetry. [Refer tables 3 to 9]

**Remark 3.29:** Out of 35 CATs, there are exactly 9 hyperbolic CATs, and out of these 9, the last 3 hyperbolic CATs:  $T_{0n} -28 = [2,3,4,2,3,4], T_{0n} -29 = [2,3,4,2,3,5], T_{0n} -30 = [2,3,5,2,3,5]$ 

are nothing but the 3 CHC (Compact Hyperbolic Coxeter) tetrahedrons found in article [29] upto symmetry. [Refer tables 8 and 9]

#### REFERENCES

- 1. John G. Ratcliffe, Foundations of Hyperbolic Manifolds, ©1994 by Springer-Verlag, New York, Inc.
- 2. http://en.wikipedia.org/wiki/Triangle-group.
- 3. P. Kalita and B. Kalita, Properties of Coxeter Andreev's Tetrahedrons, IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-3008, p-ISSN: 2319-7676. Volume 9, Issue 6, 2014, PP 81-105.
- 4. P. Kalita, "Gram Spectrums of Triangles with Triangle Groups", IJMA-5(6), 2014, 64-71.
- 5. Dipankar Mondal, Introduction to Reflection Groups, Triangle Group (Course Project), April 26, 2013.
- 6. H. S. M. Coxeter, Discrete groups generated by reflections, Ann. Of Math. 35 (1934), 588-621.
- 7. Wilhelm Magnus, Noneuclidean Tesselations and Their Groups. Academic Press New York and London, 1974.
- 8. Alexandre V. Borovik, Anna Borovik, Mirror and Reflection: The Geometry of Finite Reflection Groups. Springer-Universitext, 2010.
- 9. en.wikipedia.org/wiki/simplex.
- 10. J. Mcleod, Hyperbolic Coxeter Pyramids, Advances in Pure Mathematics, Scientific Research, 2013, 3, 78-82
- 11. Roland K. W. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedral angles, August 10, 2013, arxiv.org/pdf/math/0601148.
- 12. Aleksandr Kolpakov, On extremal properties of hyperbolic coxeter polytopes and their reflection groups, Thesis No: 1766, e-publi.de, 2012.
- 13. Anna Felikson, Pavel Tumaarkin, Coxeter polytopes with a unique pair of non intersecting facets, Journal of Combinatorial Theory, Series A 116 (2009) 875-902.
- 14. Pavel Tumarkin, Compact Hyperbolic Coxeter polytopes with facets, The Electronic Journal of Combinatorics 14 (2007).
- 15. Roland K.W. Roeder, John H. Hubbard and William D. Dunbar, Andreev's Theorem on Hyperbolic Polyhedra, Ann. Inst. Fourier, Grenoble 57, 3 (2007), 825-882.
- 16. D. Cooper, D. Long and M. Thistlethwaite, Computing varieties of representations of hyperbolic 3- manifolds into , Experiment. Math. 15, 291-305 (2006)
- 17. D. A. Derevnin, A. D. Mednykh and M. G. Pashkevich, On the volume of symmetric tetrahedron, Siberian Mathematical Journal, Vol. 45, No. 5, pp. 840-848, 2004
- 18. Yunhi Cho and Hyuk Kim. On the volume formula for hyperbolic tetrahedral. Discrete Comput. Geom., 22(3): 347-366, 1999.
- 19. E. B. Vinberg, Hyperbolic Reflection Groups, Uspekhi Mat. Nauk 40, 29-66 (1985)
- 20. R. Guo and Y. Wang, Eigenvalues of Gram Matrices.
- 21. E. B. Vinberg, The absence of crystallographic groups of reflections in Lobachevskij spaces of large dimensions, Trans. Moscow Math. Soc. 47 (1985), 75-112.
- 22. M. Hazewinkel, at .el, "The Ubiquity of Coxeter-Dynkin Diagrams", Nieuw Archief Voor Wiskunde (3), XXV(1977), 257-307.
- 23. en.wikipedia.org/wiki/tetrahedron#Applications access in October, 2013.
- 24. J. Mcleod, Hyperbolic Coxeter Pyramids, Advances in Pure Mathematics, Scientific Research, 2013, 3, 78-82
- 25. Roland K. W. Roeder, Compact hyperbolic tetrahedra with non-obtuse dihedral angles, August 10, 2013, arxiv.org/pdf/math/0601148.
- 26. D. A. Derevnin, A. D. Mednykh and M. G. Pashkevich, On the volume of symmetric tetrahedron, Siberian Mathematical Journal, Vol. 45, No. 5, pp. 840-848, 2004
- 27. E. B. Vinberg, The absence of crystallographic groups of reflections in Lobachevskij spaces of large dimensions, Trans. Moscow Math. Soc. 47 (1985), 75-112.





# DOI- 10.5281/zenodo.3246627Impact Factor- 5.07028. P. Kalita and B. Kalita, Properties of Coxeter Andreev's Tetrahedrons, ISOR Journal of Mathematics, 2014,<br/>PP 81-105.

**ISSN 2348 - 8034** 

29. P. Kalita and B. Kalita, Complete Set of CHC Tetrahedrons, International Journal of Computer Applications, Vol. 87, No. 11, 2014.

